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Abstract Human computer interaction plays an increasingly important role in our life. People

need more intelligent, concise and efficient human-computer interaction. It is of great significance

to optimize the process of human-computer interaction by using appropriate calculation methods.

In order to eliminate the interference data of thumb recognition based on sEMG signal in the pro-

cess of human-computer interaction, simplify the data processing, and improve the working effi-

ciency of general equipment of sEMG signal. In the process of gesture recognition using sEMG

signals generated by thumb, a method of redundant electrode determination based on variance the-

ory is proposed. The redundancy of five groups of action signals is divided into 16 levels and visu-

alized. By comparing the results of thumb motion recognition when different redundant channels

are removed, the optimal channel combination in the process of thumb motion recognition is

obtained. Finally, two kinds of classifiers suitable for sEMG signal field are selected, and the clas-

sification results are compared, and the best method of thumb motion pattern recognition is

obtained.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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Fig. 1 The outside muscle group.
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1. Introduction

Simplifying human-computer interaction process has become a
research hotspot in the field of intelligent control. The diversity

of gesture makes the development of human-computer interac-
tion technology based on gesture recognition more and more
important [1,2]. Surface electromyography (sEMG) signal is

gradually developed in the wave of human-computer interac-
tion. As an important means of perceiving human motion, it
can not only reflect the flexion and extension function of hand
joints, but also reflect the dynamic information such as the

position and intensity of limbs in the process of action comple-
tion. Many scholars have done a lot of research on gesture
recognition based on sEMG. The problem of electrode redun-

dancy in thumb motion recognition by sEMG is solved by
using variance theory of statistics. This method is helpful to
optimize the human-computer interaction process in this field.

Surface EMG signal acquisition equipment is relatively
simple, most of them are general equipment, and few of them
are specially designed for specific actions of specific parts. The

most direct impact of this phenomenon is that when using gen-
eral equipment to collect special or fine actions, the interfer-
ence signals generated by some redundant channels will not
only increase the difficulty of data processing, but also affect

the recognition accuracy. The innovation of this paper is to
use statistical theory to eliminate redundant channels in the
process of signal acquisition. It is of great significance to detect

and eliminate the interference signals generated by redundant
channels during the acquisition of certain specific actions by
using the universal sEMG signal acquisition equipment.

Taking 16 channel sEMG acquisition equipment as the
research object, common redundant electrodes can be obtained
by identifying the thumb fine motion of 9 targets [3–5]. This

study not only reduces the cost of hardware equipment, but
also provides a reference for optimizing electrode distribution.
It can also reduce the amount of data processing and save
time.

The remaining arrangements are as follows. The second
part introduces the related work of thumb motion recognition.
See Section 3 for experimental materials and methods. The

fourth part introduces the theory and calculation in the exper-
iment. The fifth part is the experimental results and the discus-
sion of the experimental results. See Section 6 for conclusions.

2. Related works

At present, the research of gesture recognition mainly focuses

on the recognition and classification of large-scale gestures [6].
But in daily life, subtler hand movements, including arm, wrist
and finger movements, are performed [7,8]. According to clin-
ical research, the function of thumb is much greater than that

of other fingers, and its participation is the highest in daily life.
Most of the grasping movements can’t be separated from the
cooperation of thumb. The motion state of the thumb will

affect the overall gesture, and the motion position of the
thumb will also have a direct impact on the grasping effect.
In the aspect of rehabilitation science, the movement of the

thumb can reflect the overall posture of the hand movement
to a certain extent, and the study of the thumb has a
deeper understanding of the subdivision and motion character-

istics of the whole hand control [9,10]. In the aspect of
human-computer interaction, a few subtle movements of the
thumb can be used as commands to control the computer,
which can bring more convenience to the human-computer

interaction [11–14].
Gesture recognition based on surface sEMG is mainly to

collect electrical signals generated on skin surface by EMG

acquisition equipment, and then classify and recognize the
data after feature extraction. In recent years, many scholars
have studied the myoelectric signals in the field of human-

computer interaction. Ying Sun et al. used the combination
of image and sEMG signal to recognize gestures [15]. Xun
Chen et al. studied the influence of feature and classification
algorithm on recognition accuracy. In this experiment, four

channels of sEMG acquisition equipment were used to collect
forearm sEMG signals from ten Chinese gestures. By combin-
ing traditional features with the proposed classification algo-

rithm, the recognition accuracy of hand motion was
improved to more than 95% [16]. Jongin Kim et al. used
sEMG signals to identify the scaling of the distance between

index finger and thumb on the electronic screen [17]. Cheng-
cheng Li et al. extracted four features from nine gestures and
used SVM classifier to recognize gestures with a recognition

rate of 98% [18]. G. F. Li etc. used tactile sensor in the process
of EMG gesture recognition [19]. Nor Anija Jalaludin et al.
designed a device to detect the strength of sEMG and thumb,
and established the sEMG model of the relationship between

the angle and force of thumb [20]. This paper optimizes the
method of thumb motion recognition based on sEMG signal.
Essam odah et al optimize hand tools by testing the pressure of

different holding positions with sEMG signals [21].
The use of sEMG signals to identify hand movements

requires analysis of the muscles of the hand. This study needs

to optimize the process of thumb movement recognition, so the
analysis of thumb muscles is essential [22].

The muscle groups connected to the thumb can be divided

into internal and external muscle groups [23,24]. The inner
adnexal muscle group was mainly distributed in the hand,
and the outer adnexal muscle group was mainly distributed
on the arm. The inside muscle group is composed of abductor

pollicis transverus, flexor pollicis brevis, first dorsal interossus,
opponent pollicis and abductor pollicis brevis. The outside
muscle group is composed of flexor pollicis longus, extensor

pollicis brevis and abductor pollicis longus (see Fig. 1 and
Table 1).



Table 1 Classification of thumb-related muscles.

Muscle type Name Abbreviation

Inside muscle group Abductor Pollicis

Transverus

AP

Flexor Pollicis Brevis FPB

First Dorsal Interossus FDI

Opponent pollicis OP

Abductor Pollicis Brevis APB

Outside muscle

group

Flexor Pollicis Longus FPL

Extensor Pollicis Longus EPL

Extensor Pollicis Brevis EPB

Abductor Pollicis Longus APL
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3. Material and methods

3.1. Selection of acquisition equipment

The main function of the sEMG acquisition equipment is to

store and filter the electrical signals generated by the skin sur-
face. Because the sEMG signal is a weak and easy to interfere
with the bioelectric signal, so the quality of the signal is closely
related to the equipment [25,26]. The equipment selected in this

paper adopts 16-channel high spatio-temporal resolution sam-
pling technology, which is compatible with a variety of dry and
wet electrodes and Bluetooth wireless communication technol-

ogy, and can be used for gait analysis, muscle fatigue analysis,
rehabilitation treatment, gesture recognition and so on. This
equipment is also the commonest equipment on the market

to collect the upper limb sEMG signals. It can basically meet
most research tasks based on EMG signals. The experimental
equipment is shown in Fig. 2. The sEMG signal acquisition

system used in this paper is customized by the intelligent sys-
tem and biomedical robot group of the University of Ports-
mouth UK. The electrode sleeve is designed with 18 dry
electrodes embedded in the flexible fabric to form 16 bipolar

sEMG channels, and an empty sleeve is attached to reduce
the use of artifacts. Among the 18 electrodes, one is the
grounding electrode, the other is the reference electrode, and

the other 16 electrodes are evenly distributed inside the sleeve.
The main equipment of sEMG acquisition is a host using high
spatial-temporal resolution sampling technology, which can be

compatible with various types of dry and wet electrodes
Fig. 2 Experimental equipment.
through Bluetooth wireless communication transmission [27–
29]. After the sEMG host and the computer host are paired
by Bluetooth, they can enter the sEMG signal acquisition

interface. The software matching the hardware is myoanalytics
2.0. It can do some proper debugging in the signal acquisition
preprocessing, such as setting up small and large window,

translation distance, signal acquisition time, extracting several
basic features according to the signal characteristics. In the
same time, two modes of on-line and off-line analysis can be

provided according to the research needs [30,31]. Because the
article needs to do other analysis on the original signal, it
adopts off-line analysis.

3.2. Experimental process design

Since an international standard for judging flexibility has been
designed for fingers, the core of the standard is whether the

thumb can easily touch the other four fingers, so we selected
five dynamic gestures according to the standard [32,33].

They are thumb upward movement-relax (UP), thumb

downward movement-relax (DOWM), thumb left movement-
relax (LEFT), thumb right movement-relax (RIGHT), thumb
press-relax (PRESS). The actual actions of the five gestures

are shown in Fig. 3.
A total of 9 subjects, including 2 women and 7 men, aged

between 25 and 30 years old, were healthy and had no history
of motor nerve, and there was no high intensity activity in the

week before the experiment.
The experiment requires that in the process of data acquisi-

tion, the subjects should keep their sitting position, put their

elbows on the table, and their forearms should be suspended
naturally. Each subject needs to measure five sets of data, each
of which includes five types of gestures, each of which is

repeated ten times. A gesture cycle is 10 s, the first 5 s are
the receipt collection phase, the last 5 s are the relaxation phase
[34,35]. The gesture data of 9 subjects were collected for 5 days.

There were 2250 gestures in the whole data set.

4. Theory and calculation

4.1. Wave filtering

Wave filtering is an operation to filter out the frequency of

specific band in the signal, and it is an important measure to
Fig. 3 Five gestures.



Fig. 5 Effect of feature clustering.

Fig. 6 Surface EMG signal generation region.

1152
suppress and prevent interference. The digital filter converts
the discrete input signal into another discrete output signal
according to the actual need, as shown in block Fig. 4 [36].

Because the sEMG signal is very weak, it is necessary to
amplify the electric signal collected by the front electrode
through the pre amplification circuit. In the second step, the

high pass filter and the low pass filter are used to filter the wake
noise within 20 Hz and the ambient noise above 500 Hz. Then
through the comb filter of 50 Hz, the power frequency noise

caused by the power frequency induction phenomenon inside
the acquisition device is removed as much as possible. Finally,
the filtered signal is amplified twice to fit the acquisition
equipment.

4.2. Active segment detection

In the experiment, the five gestures are all dynamic, and the

five seconds of relaxing time when collecting data is not accu-
rate enough. So we must get rid of the redundant signals of the
relaxation time, and the intercepted gesture signals must also

include the whole movement process, and the task of the activ-
ity segment detection is to determine the start and end of the
gesture [37–39]. The moving average method uses a certain

window width to slide on the signal, and compares the instan-
taneous energy sequence of the signal with the preset threshold
value in real time, so as to determine the start and end point of
the gesture signal [40]. The signal value of sEMG changes from

positive to negative in a short period of time, and the random
fluctuation is relatively large, the moving average method is
conducive to eliminate the interference fluctuation and get

the overall trend of the signal. The overall process is as follows.

(1) By summing and averaging the channel signals, an aver-

age sEMG sequence s
� ðtÞreflecting the execution and

relaxation periods of gestures can be obtained. The for-
mula is shown in Eq. (1):

s
�ðtÞ ¼ 1

C

XC

c¼1

scðtÞ ð1Þ

where C is the number of sEMG channels and c is the channel
label, and 1 6 c 6 C.SCðtÞ is the instantaneous EMG

sequence.

(2) Using active window width W = 300, the instantaneous
energy sequence of signal is averaged by moving item by

item, and the moving average sequence EMAðtÞ is
obtained, as shown in Eq. (2).E(i) t is the instantaneous
energy sequence.

EMAðtÞ ¼ 1

W

Xt

i¼t�Wþ1
EðiÞ t P W ð2Þ
Surface 
electrode
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circuit
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Fig. 4 Signal pr
(3) Choose appropriate threshold and process the signal
sequence after moving average to determine the starting
point and ending point of the active segment: the start-
ing point is defined as the point where the moving aver-

age signal just exceeds the threshold, and the ending
point is defined as the point where the average signal just
falls below the threshold [41]. The selection of threshold

is determined by the effect of the experiment. The larger
the noise of the collected signal is, the larger the setting
of threshold is. The signal quality of this paper is better,

so the selected threshold is 3% of the instantaneous
energy peak.
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(4) According to the starting point and the end point, the

active segment whose data point length is less than a cer-
tain value is removed as noise.

4.3. Feature extraction

The best ones are selected from six common time-domain
methods, which are mean absolute value feature, slope sign

change feature, zero-crossing feature, waveform length
feature, autoregressive model and root mean square
[42–44]. Through clustering validation, it is found that the

combination of SSC, RMS and AR has the best classifica-
tion effect [45–47]. The effect of feature clustering is shown
in Fig. 5.
Fig. 7 Channel redun
Feature ¼ SSC;RMS;ARf g ð3Þ
4.4. Redundant electrode selection

The sEMG acquisition equipment used is composed of 16 elec-
trodes evenly distributed in the forearm. However, in the pro-
cess of collecting sEMG signals of different parts, not all

motor signals are useful. The external muscle groups that pro-
duce signals mainly concentrate in the blue area of the Fig. 6.
In theory, there is no sEMG signal related to thumb outside
the blue area. In the actual operation process, factors such

as muscle linkage and electrode displacement increase the area
of signals generated in the forearm, but for uniformity. Redun-
dant sEMG still exists in 16-channel distributed devices [48].
dancy visualization.



Fig. 8 Weighted Channel Redundancy.
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Variance is a measure of the degree of deviation of data,
which can represent the degree of redundancy of sEMG time
domain information.

When we make the five thumb gestures as shown in
Fig. 2 above, the collected sEMG signals will change, and
the change degree of the signals from the 16 channels is also

different. Based on the signal value when we don’t do the
actions, the sEMG signals of the 16 channels are variance
calculated.

The larger the variance value is, the more active the signal
is, and the smaller the variance value is, the more redundant
the signal is.

VAR ¼ 1

N� 1

XN

i¼1

x2
i ð4Þ

The redundancy of each channel signal is divided into 16

levels, and the redundancy is gradually reduced from A to P.
Fig. 7 can be obtained by grading and visualizing the redun-
dancy of each channel in each action using the above variance

calculation value [49,50].
The depth of the color in the image represents the number

of redundancy occurrences. The dark region indicates that the

number of redundancy occurrences is less in this channel, while
the light region indicates that the number of redundancy
occurrences is more in this channel. Because the redundancy

level is proportional to the weight, the weight of redundancy
A to redundancy P decreases step by step. We use simple
sequencing coding method to assign weight to each level [51–
54]. The corresponding relationship between weight and cod-

ing is shown in Eq. (5).

Wi ¼ Ci

PP

i¼A

Ci

ð5Þ

where i denotes grade A to grade P; C denotes natural number
coefficient; W denotes weight. The specific relationship is
shown in Table 2.

At the same time, in order to ensure the robustness of the

data, the cross validation method [55,56] is used here to sepa-
rate the data of one group of subjects, and the data of the other
eight groups of subjects are combined into a sub database for

testing. After nine repetitions in turn, the weighted redundancy
rate of 16 channels is shown in Fig. 8.

According to the weighted results, there are three kinds of

public redundant channels, which are:

(1) 13
(2) 12, 13, 14

(3) 2, 3, 4, 5, 6, 10, 11, 12, 13, 14
Table 2 Redundancy levels and weights.

Redundancy level Most redundant Most active

A B C D E F G

Coefficient 16 15 14 13 12 11 10

Weight 0.117 0.110 0.103 0.096 0.088 0.080 0.074
5. Results and discussion

In order to get better results, we must select a classifier with

certain feature advantages. At present, the mainstream limb
motion pattern classifiers include: artificial neural network
(ANN), linear discriminant analysis (LDA), support vector

machine (SVM), Gaussian mixture model (GMM), hidden
Markov model (HMM), generalized regression neural network
(GRNN), etc. Among them, SVM has excellent performance,
its meticulous mathematical theory and good classification

performance make it widely used in the field of electromyogra-
phy, so SVM is the first choice classifier for experiments;
GRNN has strong approximation ability and strong approxi-

mation ability and classification ability, and its learning speed
is better than BP (error back propagation algorithm) neural
network and RBF (radial phase basis) neural network, and it

is good at To deal with the problem of data classification under
noise, GRNN is used as the second choice classifier.

There are 2250 data samples in this experiment. 90% of
them are used as training data, 10% as test, cross validation

10 groups, each group has 225 test samples. The SVM algo-
rithm is selected as the reference classifier, and the above three
results are classified respectively. The results are as follows.

From the Fig. 9, we can see that after removing 10 redun-
dant channels, the recognition accuracy is significantly
reduced, but when removing channels 13 and 12, 13 and 14,

the accuracy is almost unchanged. Under the premise of keep-
ing the recognition accuracy unchanged, more redundant
channels are selected to be removed, including channels 12,

13 and 14. After removing three channels, the training time
of classifier is reduced by nearly 20%.

The generalized regression neural network (GRNN) is a
deformation of traditional radial basis function (RBF) net-

work based on mathematical statistics, which is mainly used
for regression analysis of nonlinear data [57–59]. Its nonlinear
mapping ability and training speed are better than RBF
H I J K L M N O P

9 8 7 6 5 4 3 2 1

0.066 0.058 0.051 0.044 0.036 0.029 0.022 0.015 0.007
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Fig. 9 Remove redundant channels and retaining the average classification accuracy of all channels.
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Fig. 10 Classification results of 16 channels reserved by SVM and GRNN.
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Fig. 11 Classification results of channels 12, 13 and 14 removed by SVM and GRNN.
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network, and its nonlinear fitting ability, classification ability

and training speed are better than BP neural network. GRNN
is similar to RBF in structure, and generally consists of four
layers: input layer, mode layer, summation layer and output
layer. The number of neurons in the input layer of GRNN net-

work is the same as the dimension of the input vector in the
training set samples, and each neuron directly transfers it to
the model layer after receiving the data [60]. In the experiment,
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the number of neurons in the input layer is 52; the number of
neurons in the model layer is equal to the total number of
learning samples, and each neuron distribution corresponds

to different samples; the number of neurons in the sum layer
is related to the total number of samples, In this paper, the
number of neurons in this layer is 5; the number of neurons

in the output layer is generally equal to the total number of
samples.

B comparng Figs. 10 and 11, it can be seen that the recog-

nition rate of SVM is slightly better than GRNN, and the
robustness is obviously better than GRNN, whether all chan-
nels are reserved or 12, 13 and 14 channels are removed. There-
fore, the redundant channel removed in this paper is not only

suitable for SVM, but also for other classifiers.

6. Conclusion

First, the dynamic gestures are determined, the raw data is col-
lected, the raw data is filtered, active segment detection, and
feature selection are performed. Then, the redundancy of each

channel electrode was calculated by using the variance theory.
Three types of redundant electrode combinations were
obtained by using a simple coding method. SVM was selected

as the reference classifier, and the 12, 13, 14 channels were
removed as the best. Finally, by comparing the classification
effect of SVM and GRNN in 16-channel and 13-channel, it

is proved that the removed redundant electrodes are common
redundant electrodes.
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